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Abstract: Using the inverse scattering method we construct a six-parameter family of

exact, stationary, asymptotically flat solutions of the 4+1 dimensional vacuum Einstein

equations, with U(1)2 rotational symmetry. It describes the superposition of two Myers-

Perry black holes, each with a single angular momentum parameter, both in the same

plane. The black holes live in a background geometry which is the Euclidean C-metric

with an extra flat time direction. This background possesses conical singularities in two

adjacent compact regions, each corresponding to a set of fixed points of one of the U(1)

actions in the Cartan sub-algebra of SO(4). We discuss several aspects of the black holes

geometry, including the conical singularities arising from force imbalance, and the torsion

singularity arising from torque imbalance. The double Myers-Perry solution presented

herein is considerably simpler than the four dimensional double Kerr solution and might

be of interest in studying spin-spin interactions in five dimensional general relativity.
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1. Introduction

The paradigmatic example of a static, regular (on and outside an event horizon) multi-

black hole spacetime is the family of Majumdar-Papapetrou solutions of Einstein-Maxwell

theory in four dimensions [1, 2]. All of the individual objects in these configurations are

extremal Reissner-Nordström black holes [3], which are held in equilibrium due to a balance

between gravitational attraction and electrostatic repulsion for any pair of black holes.

Such force balance is mathematically realised by an exact linearisation of the full Einstein-

Maxwell equations. This linearisation is most easily obtained by taking the Einstein-

Maxwell theory as the bosonic sector of N = 2, D = 4 Supergravity and searching for

static, supersymmetric backgrounds with a timelike Killing vector field; the Majumdar-

Papapetrou family is the most general such solution [4].

It turns out that the Majumdar-Papapetrou family is not the most general station-

ary, supersymmetric background within N = 2, D = 4 Supergravity, even demanding

asymptotic flatness [5]; the most general such solution is the Israel-Wilson-Perjes (IWP)

family [6, 7]. For a specific choice, it represents a set of Kerr-Newman “particles” (naked

singularities), each of which is obtained by giving spin to an extremal Reissner-Nordström

black hole. The force balance is now more involved: in addition to the monopole-monopole
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gravitational attraction and electrostatic repulsion, we have dipole-dipole forces. The grav-

itational one is a spin-spin force, first discussed by Wald [8] using Papapetrou’s equation

for a spinning particle [9]. Wald showed that, in an appropriate limit, this force has exactly

the same form as the usual dipole-dipole force in magnetostatics, but with opposite sign.1

This fact clarifies why there is a force balance in the IWP spacetimes, independently of

the orientation of the spin of the individual black holes. This is furthermore confirmed

by a probe computation for a charged spinning particle in an IWP spacetime [11] and by

a post-post Newtonian analysis of the metric generated by two massive charged spinning

sources in the Einstein-Maxwell theory [12]. Note that, since the magnetic dipole of a

charged spinning black hole is not an independent quantity, the gyromagnetic ratio plays

a crucial role in the cancellation of dipole forces.

But the balance of forces does not guarantee equilibrium in the presence of dipoles. We

also have to discuss the balance of torques, which is more subtle. Like in magnetostatics, in

general relativity non-aligned gravitational dipoles (spinning bodies) also produce a torque

on each other [13], which has been recently tested by the Gravity Probe B experiment.

This torque obviously vanishes when the two spins are aligned, but not the total torque.

Imagine that a Schwarzschild black hole is placed in the vicinity of a Kerr black hole, with

the spin of the latter parallel to the direction of separation. One could impose a constraint

(in the form of a strut) preventing the two black holes from approaching, i.e. from gaining

linear acceleration. If no constraint is imposed in the form of a torque, we would expect

the Schwarzschild black hole to gain angular acceleration, due to the dragging of inertial

frames caused by the Kerr black hole. Thus, in the gravitational case, there seems to be

an additional torque, besides the aforementioned one.

If this additional torque is present we might expect some signature in a multi black

hole spacetime. Indeed, it was shown in [14] that the rotation one-form in a two (aligned)

particles IWP spacetime will diverge somewhere along the axis - either in between the

particles or in the remaining of the axis - unless a certain requirement, which we dub axis

condition, is obeyed (c.f. section 4.2). Failure to obey this condition has been interpreted

as a “torsion singularity” in [12, 15, 16]; therein the condition arises as the requirement that

the azimuthal vector field has a fixed point at the axis and is spatial otherwise. The analysis

in [12] also suggests that, for charged rotating black holes, there is an electromagnetic

contribution to the effect that makes a Schwarzschild black hole rotate in the vicinity of a

Kerr black hole. However, it so happens that for this effect the purely gravitational and

electromagnetic contributions do not completely cancel, even in the supersymmetric case

of IWP particles. It is worth noting that the post-post Newtonian analysis suggests that,

for uncharged sources, the regularity condition, i.e. the requirement of absence of conical

singularity representing struts or strings necessary for force balance, is incompatible with

the axis condition [15].

The regularity condition has been studied at the level of exact, non-supersymmetric,

static solutions in the multi-Schwarzschild [17, 18] and the multi-Schwarzschild-Tangherlini [19]

1Actually, using a gravito-electromagnetic analogy based on tidal tensors [10], the Papapetrou equation

for a spinning particle can be simply derived from the force acting on a magnetic dipole in magnetostatics.
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spacetimes. However, to study the regularity and axis condition at the level of exact,

non-supersymmetric solutions seems, in principle, a much more difficult task, mainly be-

cause such solutions, which are stationary rather than static, are usually rather involved.

The paradigmatic example is the double-Kerr solution, originally generated in [20] via a

Bäcklund transformation. The complexity of this solution has led to different claims con-

cerning the explicit form of these conditions (see, for instance [21, 16, 22]), although it is

a consensual conclusion that the solution for two black holes must have singularities, in

agreement with the spinning test particle analysis of [8]. It turns out that a five dimen-

sional version of the double-Kerr solution, the double Myers-Perry solution, is drastically

simpler than its four dimensional counterpart. The reason is simply understood: using the

Belinskii-Zakharov inverse scattering method [23, 24], the Kerr solution [25] is generated

by a 2-soliton transformation, whereas the Myers-Perry solution [26] with a single angular

momentum can be generated by a single soliton transformation (see [27] for a review of

the inverse scattering method and applications). Thus, whereas the double-Kerr solution

is generated by a 4-soliton transformation [16], the double-Myers-Perry solution is gener-

ated, effectively, by a 2-soliton transformation.2 To generate the latter solution is the main

purpose of the present paper. This will allow us to write down in a very simple and clear

fashion the regularity and axis conditions for this spacetime.

The new solution presented herein is also of interest in a different context. Over

the last few years a great effort has been made to tackle the black hole classification

problem in higher dimensions [27]. It is well known that the “phase space” of regular

(i.e. free of curvature singularities on and outside an event horizon) and asymptotically

flat black objects is rather richer than in four dimensions, containing exotic objects such

as black rings [28 – 34] and black saturns [35]; equivalently there are no (simple) black

hole uniqueness theorems analogous to the four dimensional case for vacuum, stationary

configurations. The new stationary solution presented herein describes the superposition

of two Myers-Perry black holes in five dimensions, each with a single angular momentum

parameter, both in the same plane. The black holes live in a background geometry, which is

the Euclidean C-metric with an extra flat time direction. The downside of the new solution

is that it is built upon a non-trivial background geometry with conical singularities, which

are still present, generically, when the black holes are included. It remains to be seen if, by

including the second angular momentum parameter or other fields, like the electromagnetic

field, such singularities can be removed.

This paper is organised as follows. In section two we analyse the background geometry

upon which the double Myers-Perry solution will be built. The use of this background is

actually a necessity for using the inverse scattering method. In section 3 we discuss the

static solution, first constructed in [19], that will be used as the seed metric for the new

solution presented herein. In section 4 the double Myers-Perry solution is generated using

the inverse scattering method and its rod structure is analysed; other basic properties of

the solution as well as the computation of the relevant physical quantities are presented in

2Actually we will use a 4-soliton transformation, but since two of the solitons will have trivial BZ vectors,

it is effectively as complex as a 2-soliton transformation.
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y = −1 y = − 1
2mA

x = +1

t

φ

ψ
a1 a3 a5

x = −1

Figure 1: Rod structure for the background spacetime. Next to each rod we write its locus in xy

coordinates. The rods correspond to the edges of the rectangle in figure 2 (right). In terms of the

parameters m and A, the ai’s can be taken as a1 = − 1

2A2 , a3 = −m
A

, a5 = m
A

.

section 5. We close with a discussion.

2. Background geometry: the Euclidean C-metric

In principle one could have a double Myers-Perry solution in five dimensions that would

reduce to flat space when the two black holes are removed. Such solution, however, could

not have a U(1)2 spatial isometry which, together with time translations, yields the three

commuting Killing vector fields necessary to apply the inverse scattering method that we

shall use to generate the new solution. Indeed, placing two separated point-like sources in

five dimensional Minkowski spacetime reduces the spatial isometry to SO(3). Introducing

rotation breaks this symmetry group further; at most we end up with SO(2). Thus, such

solution could not be generated by the Weyl or inverse scattering techniques and such

problem seems very difficult to approach [36].

To generate a solution with two black holes (with topologically S3 horizons) with the

Weyl and inverse scattering techniques, we need a U(1)2 spatial isometry and hence a

background with at least two fixed points of the two U(1) actions. Flat space has only one

such point, as it is clear from its rod structure. A background with two such points would

be the four dimensional Euclidean Schwarzschild with an added time direction. However,

as it is clear from its rod structure, this background is not asymptotically flat. The black

holes one can superimpose on this background live on Kaluza-Klein bubbles, and they have

been constructed in [37 – 39].

In order to have at least two fixed points and asymptotic flatness we need a background

with three fixed points, which is exactly what happens for the Euclidean C-metric with an

extra flat time direction; thus this geometry is our background in the absence of the two

black holes. Its rod structure is represented in figure 1.

The Lorentzian C-metric can be written in xy coordinates as [40]

ds2 =
1

A2(x− y)2

[

G(y)dt2 − dy2

G(y)
+

dx2

G(x)
+G(x)dψ̃2

]

, G(ξ) ≡ (1 − ξ2)(1 + 2mAξ) ,

with 0 < 2mA < 1. The coordinate range for the xy coordinates is displayed in figure 2

(left). For the Lorentzian solution, these are −1 ≤ x ≤ 1 for −∞ < y ≤ −1 and −1 ≤ y <

x ≤ 1. The latter (region I) corresponds to a “Milne” region wherein the coordinate t is

spacelike and y is timelike, a behaviour also found for these coordinates when y < −1/2mA

(region III).
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1)

O
utside A

xis (x=
−

1)

x

y

II

I

III

Aceleration Horizon
(y=−1)

(x=1,y=1)

(x=−1,y=−1)
Spatial Infinity

Temporal Infinity

Event Horizon
(y=−1/2mA)

Figure 2: xy coordinate space for the Lorentzian (left) and Euclidean (right) C-metric. For the

latter each edge is a fixed point set of a given periodic vector field.

The Euclidean C-metric we want to consider is obtained by the analytic continua-

tion t → iφ̃. The coordinate range for the xy coordinates is also displayed in figure 2

(right), corresponding to the rectangular region wherein the t coordinate was timelike in

the Lorentzian regime (region II). The boundary of this region is a set of fixed points of

either ∂/∂ψ̃ at x = ±1, ∂/∂φ̃ at y = −1,− 1
2mA , or both (the three vertexes of the rectangle

denoted a1, a3 and a5 are double fixed points). This can be clearly seen by changing from

(x, y) coordinates to canonical Weyl coordinates (ρ, z); in particular we have

ρ2 =
(y2 − 1)(1 − x2)(1 + 2mAy)(1 + 2mAx)

A4(x− y)4(1 − 2mA)4
.

Note that the vertexes of the rectangular region in xy coordinate space correspond to the

breaks in the rod structure of the Euclidean C-metric - figure 1.

There are conical singularities in this background geometry. This is the price to pay

to have three double fixed points. We can, however, make the geometry free of conical

singularities at spatial infinity. Defining new angular coordinates (φ,ψ) ≡ (1−2mA)(φ̃, ψ̃),

and taking the canonical periodicities ∆φ = 2π = ∆ψ, the edges x = −1 and y = −1

become free of conical singularities. Thus the background geometry becomes asymptotically

flat. In the remaining two edges there are conical excesses - figure 3 - given by

δψ = 2π
4mA

1 − 2mA
= 2π

a53

a31
, x = +1 ⇔ a1 < z < a3 , (2.1)

δφ = 2π
1 − 2mA

4mA
= 2π

a31

a53
, y = − 1

2mA
⇔ a3 < z < a5 , (2.2)

where throughout this paper we use the notation

aij ≡ ai − aj .

In figure 4 we represent the norm of ∂/∂ψ and ∂/∂φ in xy coordinate space. This gives

an idea of the four dimensional Euclidean geometry. In particular, neglecting the conical

– 5 –
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Edge 1
Conical excess δψ
φ-plane

Edge 2
Conical excess δφ
ψ-plane

Figure 3: Conical singularities in xy coordinate space. After an appropriate choice of φ, ψ angles,

with canonical period 2π the only conical singularities are found at the edges x = +1 (Edge 1),

y = − 1

2mA
(Edge 2). The two double fixed points where black holes will be placed are also

emphasised.

||∂/∂ψ|| ||∂/∂φ||(x=−1,y=−1)
Spatial Infinity

(x=−1,y=−1)
Spatial Infinity

x=+1x=−1

y=−1

y=−1/2mA

Figure 4: xy coordinate space; Left: Norm of ∂
∂ψ

along y = − 1

2mA
,− 1

mA
,−1; note that x = ±1

are fixed point sets of this vector field, but with our choice of angular coordinate there are conical

singularities only at x = +1; Right: Norm of ∂
∂φ

along x = −1, 0,+1; note that y = −1,− 1

2mA

are fixed point sets of this vector field, but with our choice of angular coordinate there are conical

singularities only at y = − 1

2mA
.

singularities, its topology is S2 × S2 − {P}, where the point P corresponds to spatial

infinity wherein these norms diverge. This topology is analogous to that of the instanton

considered in [41].

In terms of canonical Weyl coordinates, the metric of the five dimensional background

geometry has the form3

ds2 = −dt2 +
µ3

µ1µ5
ρ2dφ2 +

µ1µ5

µ3

(

dψ2 +
(ρ2 + µ1µ3)

2(ρ2 + µ3µ5)
2
[

dρ2 + dz2
]

(ρ2 + µ1µ5)2(ρ2 + µ2
1)(ρ

2 + µ2
3)(ρ

2 + µ2
5)

)

,

(2.3)

where

µk ≡
√

ρ2 + (z − ak)2 − (z − ak) .

This metric is invariant under the exchange

a1 ↔ a5 . (2.4)

3Note that the dimensions of these coordinates are [ρ] = [z] = L2.
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However notice that the conical excesses in the φ and ψ plane are interchanged. Since

a generalisation of this invariance will hold in the presence of the two black holes, let us

comment on it. The physical information that determines the geometry is given by the

sizes of the two finite rods in figure 1. Thus, one of the three parameters that describe the

geometry (a1, a3, a5) is redundant. Such redundancy can be gauged away by introducing a

new coordinate z̃ = z − a3, in terms of which the metric reads

ds2 = −dt2+ µ

µ13µ53
ρ2dφ2+

µ13µ53

µ

(

dψ2 +
(ρ2 + µµ13)

2(ρ2 + µµ53)
2
[

dρ2+dz̃2
]

(ρ2 + µ13µ53)2(ρ2 + µ2
13)(ρ

2 + µ2)(ρ2 + µ2
53)

)

,

where

µk3 ≡
√

ρ2 + (z̃ − ak3)2 − (z̃ − ak3) , µ = µ33 .

Fixing the physical information, i.e. the rod sizes a53 and a31, it is simple to show that the

metric is invariant under

(a31, a53; z̃, ψ, φ) → (a53, a31;−z̃, φ, ψ) .

This follows easily by noting that under this transformation

µ53 → ρ2

µ13
, µ13 → ρ2

µ53
, µ→ ρ2

µ
.

This is nothing but the usual invariance of a system of particles on a line under the inversion

of the order together with a parity transformation and it is what the transformation (2.4)

effectively implements. Noting this invariance will be useful for checking our solution and

also for checking physical quantities that describe the whole spacetime. Note that, in

the particular case a31 = a53, the background geometry is invariant under (z̃, ψ, φ) →
(−z̃, φ, ψ); this is the five dimensional version of the Z2 symmetry of, for instance, the

equal mass double-Schwarzschild solution.

3. The static case: double Schwarzschild-Tangherlini

The starting point for the new solution which will be presented in the next section is the

double Schwarzschild-Tangherlini spacetime built in [19], using the technique developed

in [42], whose rod structure is given in figure 5. We have placed the two timelike rods

representing black hole horizons at z = a1, a5 in figure 1, so that the conical singularities

represented in figure 3 are in between the two black holes. In this way we expect that the

interactions between the two black holes might alter significantly these singularities. Note

that, throughout this paper, we choose the ordering:

a1 < a2 < a3 < a4 < a5 . (3.1)

In the static case the metric is essentially read off from the rod structure:

ds2 = −µ1µ4

µ2µ5
dt2+

µ3

µ1µ4
ρ2dφ2 +

µ2µ5

µ3
dψ2+k

µ2µ5

µ3

∏

i<j(ρ
2 + µiµj)

[

dρ2+dz2
]

(ρ2 + µ1µ4)3(ρ2 + µ2µ5)3
∏5
i=1(ρ

2 + µ2
i )
,

(3.2)

– 7 –
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(1,0,0) (1,0,0)

(0,1,0) (0,1,0)

(0,0,1)(0,0,1)

t

φ

ψ
a1 a2 a3 a4 a5

Figure 5: Rod structure for the double Schwarzschild-Tangherlini. Next to each rod the corre-

sponding eigenvector [43] is displayed.

where k is an integration constant. One can verify that the metric is invariant under the

exchange

(a1, a2) ↔ (a4, a5) , (3.3)

which generalises (2.4) in the presence of static black holes. Taking k = 1 and the period-

icities ∆φ = 2π = ∆ψ guarantees this solution is asymptotically flat. There are, however,

conical singularities for a2 < z < a3 and a3 < z < a4 in the ρ − ψ and ρ − φ planes,

respectively. The conical excesses are, respectively [19]

δψ = 2π

(

a41a52√
a51a31a32a42

− 1

)

, a2 ≤ z < a3 ;

δφ = 2π

(

a41a52√
a51a43a53a42

− 1

)

, a3 < z ≤ a4 .

(3.4)

It is straightforward to show that, for the ordering (3.1), δψ and δφ are strictly positive.

Hence there is no choice of parameters that makes the background free of conical singular-

ities in the static case. We will contrast this state of affairs with that of the stationary

solution presented below.

The mass, area and temperature of each black hole can be written as (we set the five

dimensional Newton constant to one)

MKomar
1 =

3π

8
∆ , A1 = 2π2

√
2a21a31a51

a41
∆ , T1 =

1

2π

√

2a21

a31a51

a41

∆
, (3.5)

MKomar
2 =

3π

8
∆̄ , A2 = 2π2

√
2a54a53a51

a52
∆̄ , T2 =

1

2π

√

2a54

a53a51

a52

∆̄
, (3.6)

where the individual masses can be computed as Komar integrals at each horizon (cf.

section 5.5), and for reasons that will become clear later we introduced

∆ ≡ 2a21 , ∆̄ ≡ 2a54 . (3.7)

These quantities are consistent with the Smarr-type formula

2

3
MKomar
i = Ti

Ai

4
, i = 1, 2 . (3.8)

Note also that in this case the two black hole masses add up to the ADM mass of the

spacetime:

MADM = MKomar
1 +MKomar

2 . (3.9)

– 8 –
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Finally, observe that under (3.3) the physical masses and conical excesses are interchanged,

as one would expect:

MKomar
1 ↔MKomar

2 , δψ ↔ δφ .

4. The stationary case: double Myers-Perry

4.1 Generating the solution with the inverse scattering method

InD spacetime dimensions, the inverse scattering method (or Belinskii-Zakharov method) [23,

24] can be used to construct new Ricci flat metrics with D − 2 commuting Killing vector

fields from known ones, by using purely algebraic manipulations. Such metrics can always

be written in the form

ds2 = Gab(ρ, z)dx
adxb + e2ν(ρ,z)(dρ2 + dz2) , (4.1)

where a, b = 1, . . . ,D − 2. In what follows we shall specialise all results of the method to

the case of interest herein; in particular D = 5.

The seed metric is the double Schwarzschild-Tangherlini spacetime (3.2):

G0 = diag

{

−µ1µ4

µ2µ5
,− µ̄1µ3

µ4
,
µ2µ5

µ3

}

. (4.2)

As usual the µ’s refer to soliton positions in the BZ method and

µ̃k = ±
√

ρ2 + (z − ak)2 − (z − ak) ;

the “+” pole refers to a soliton and is denoted by µk; the “−” pole refers to an anti-soliton

and is denoted by µ̄k. For the seed solution the conformal factor is, from (3.2),

e2ν0 = k
µ2µ5

µ3

∏

i<j(ρ
2 + µiµj)

(ρ2 + µ1µ4)3(ρ2 + µ2µ5)3
∏5
i=1(ρ

2 + µ2
i )
, (4.3)

where k is an integration constant.

We proceed with the method suggested by Pomeransky [44] (see also [27] for a recent

review) and implement the following 4-soliton transformation: we remove two anti-solitons,

at z = a1 and z = a4, and two solitons, at z = a2 and z = a5, all with BZ vectors (1, 0, 0).

Thus we divide (g0)tt by ρ8/µ̄2
1µ̄

2
4µ

2
2µ

2
5. The seed metric becomes

G′

0 =
µ2µ5

µ1µ4
diag

{

−1,
µ3ρ

2

µ2µ5
,
µ1µ4

µ3

}

≡ µ2µ5

µ1µ4
G̃0 . (4.4)

We will actually take the rescaled metric G̃0 to be our seed (bearing in mind that one

should multiply the final metric by the overall factor µ2µ5/µ1µ4). We take the generating

matrix to be

Ψ̃0(λ, ρ, z) = diag

{

−1,−(µ̄2 − λ)(µ̄5 − λ)

(µ̄3 − λ)
,
(µ1 − λ)(µ4 − λ)

(µ3 − λ)

}

. (4.5)

– 9 –
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One can verify that this matrix solves the Lax pair constructed in the BZ method (see [23,

24]). The double Myers-Perry solution is now obtained by a 4-soliton transformation:

using G̃0 as seed, we add two anti-solitons, at z = a1 with BZ vector m
(1)
0b = (1, b, 0) and

at z = a4 with a BZ vector m
(4)
0b = (1, c, 0), and add two trivial solitons, at z = a2 with BZ

vector m
(2)
0b = (1, 0, 0) and at z = a5 with BZ vector m

(5)
0b = (1, 0, 0).4 Notice that we have

introduced two new parameters: b and c. The resulting metric is

G =
µ2µ5

µ1µ4
G̃ ,

where G̃ has components

G̃ab = (G̃0)ab −
∑

k,l

(G̃0)acm
(k)
c

(

Γ̃−1
)

kl
m

(l)
d (G̃0)db

µ̃kµ̃l
, (4.6)

with k, l = 1, 2, 4, 5 and µ̃k = µk for k = 2, 4 whereas µ̃k = µ̄k for k = 1, 3. The space-time

components of the four vectors m(k) are given by

m(k)
a = m

(k)
0b

[

Ψ̃−1
0 (µ̃k, ρ, z)

]

ba
. (4.7)

The symmetric matrix Γ̃, whose inverse is Γ̃−1, reads

Γ̃kl =
m

(k)
a (G̃0)abm

(l)
b

ρ2 + µ̃kµ̃l
. (4.8)

Finally, it only remains to compute the function ν in the metric, which is given by

e2ν = e2ν0
det Γkl

det Γ
(0)
kl

, (4.9)

where Γ(0) and Γ are constructed as in (4.8) using G0 and G, respectively.

The end result of the above algorithm can be written in the following form, analogous

to the black saturn solution [35]

ds2 = −Hy

Hx

[

dt +

(

ωφ
Hy

− q

)

dφ

]2

+
Hx

Hy

ρ2µ3

µ2µ5
dφ2 +

µ2µ5

µ3
dψ2 + k

Hx

F
(dρ2 + dz2) , (4.10)

4This 4-soliton transformation allows us to work with the simplest possible seed (rescaled metric G̃0).

Moreover, it would now be straightforward, even if computationally challenging, to generate the general

double doubly spinning Myers Perry (i.e the solution where each black hole has angular momentum in both

planes) just by considering the non trivial BZ vectors: m
(1)
0b = (1, b, 0), m

(2)
0b = (1, 0, d), m

(4)
0b = (1, c, 0) and

m
(5)
0b = (1, 0, e).
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where a coordinate transformation dt → dt − q dφ was performed; q will be chosen below.

The metric functions are5

Hx = M0 + b2M1 + c2M2 + bcM3 + b2c2M4 ,

Hy =
ρ2

µ2µ5

[

M0
µ1µ4

ρ2
− b2M1

µ4

µ1
− c2M2

µ1

µ4
− bcM3 + b2c2M4

ρ2

µ1µ4

]

,

ωφ = 2

√

µ3

µ2µ5

[

bR1

√

M0M1 + cR4

√

M0M2 − b2cR4

√

M1M4 − bc2R1

√

M2M4

]

;

(4.11)

where Ri =
√

ρ2 + (z − ai)2 and the functions Mi are

M0 ≡ µ2µ
2
3µ5 (µ1 − µ4)

2 (ρ2 + µ1µ2

)2 (
ρ2 + µ1µ5

)2 (
ρ2 + µ2µ4

)2 (
ρ2 + µ4µ5

)2
,

M1 ≡ µ2
1µ

2
2µ3µ

2
5 (µ1 − µ3)

2 (ρ2 + µ1µ4

)2 (
ρ2 + µ2µ4

)2 (
ρ2 + µ4µ5

)2
,

M2 ≡ µ2
2µ3µ

2
4µ

2
5 (µ3 − µ4)

2 (ρ2 + µ1µ2

)2 (
ρ2 + µ1µ4

)2 (
ρ2 + µ1µ5

)2
,

M3 ≡ 2µ1µ
2
2µ3µ4µ

2
5 (µ1 − µ3) (µ3 − µ4)

(

ρ2 + µ2
1

) (

ρ2 + µ2
4

) (

ρ2 + µ1µ2

) (

ρ2 + µ1µ5

)

×
(

ρ2 + µ2µ4

) (

ρ2 + µ4µ5

)

,

M4 ≡ µ2
1µ

3
2µ

2
4µ

3
5ρ

4 (µ1 − µ3)
2 (µ1 − µ4)

2 (µ3 − µ4)
2 .

(4.12)

Moreover

F = µ3
3 (µ1 − µ4)

2 (ρ2 + µ1µ2

) (

ρ2 + µ1µ4

)2 (
ρ2 + µ1µ5

) (

ρ2 + µ2µ5

)2 (
ρ2 + µ2µ4

)

×
(

ρ2 + µ4µ5

)
∏5
i=1

(

ρ2 + µ2
i

)

/
[(

ρ2 + µ1µ3

) (

ρ2 + µ2µ3

) (

ρ2 + µ3µ4

) (

ρ2 + µ3µ5

)]

.

The metric (4.10) is invariant under the exchange

(a1, a2, b) ↔ (a4, a5, c) , (4.13)

which generalises (2.4) and (3.3) to the case of two stationary black holes.

Let us note that, despite the high degree of complexity of this solution, it is drastically

simpler than the four dimensional double Kerr solution, originally obtained via a Bäcklund

transformation [20]. From the viewpoint of the inverse scattering method this can be

understood from the fact that the double Kerr can only be constructed, from a double

Schwarzschild seed, by a four-soliton transformation with all solitons having non-trivial

BZ vectors.

4.2 Rod structure, horizons angular velocities and axis condition

The rod structure of the solution we have just generated is the same as the one of the

static solution, except for the directions of the rods - figure 6. From this rod structure it

is clear that the metric gives a six parameter family of solutions. The parameters can be

taken to be the four finite rod sizes, together with b and c. Physically, the six independent

degrees of freedom can be taken to be the two black hole masses and angular momenta,

5Following standard notation, the square roots of the function Mi are to be understood as, for example,
q

(µ1 − µ4)
2 = µ1 − µ4.
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(1,Ωφ
1 ,0) (1,Ωφ

2 ,0)

(0,1,0) (h,1,0)

(0,0,1)(0,0,1)

t

φ

ψ
a1 a2 a3 a4 a5

Figure 6: Rod structure for the double Myers-Perry spacetime. Next to each rod the corresponding

eigenvector [43] is displayed.

together with the two conical singularities. Alternatively one can replace the two conical

singularities by the two distances d1 ≡ a32 and d2 ≡ a43. Note that d = d1 + d2 is the

(coordinate) distance squared between the two black holes.

The eigenvector of the two timelike rods gains a spatial component, along the φ di-

rection. These new components are the angular velocities of the individual black hole

horizons. A computation shows that they take the form

Ωφ
1 =

a41b

a51∆
, Ωφ

2 =
a54b̃+ a51c̃

a41a51∆̄
, (4.14)

where, for convenience, we have introduced the quantities

∆ ≡ 2a21 +
a31

a51
b2 , ∆̄ ≡ 2a54 +

(b̃+ c̃)(a54b̃+ a51c̃)

a2
41a51

, (4.15)

which generalise (3.7) for the stationary case, and

b̃ ≡ a31b , c̃ ≡ a43c . (4.16)

These angular velocities reduce to the horizon angular velocities of single Myers-Perry black

holes in the limits a3 = a4 = a5 and a1 = a2 = a3, respectively (cf. (5.1) and (5.2)).

The finite rod between a3 and a4 (figure 6) also gains a timelike component,

h = −
(

gφφ
gtφ

)

ρ=0, a3<z<a4

=
(b̃+ c̃)(2a42a51 − b̃c) − 2a2

41a51c

a41(2a42a51 − b̃c)
.

Thus h = 0 iff (gφφ)ρ=0, a3<z<a4 = 0. The latter is sometimes called the axis condition [15]

(see also [16]); if violated, ρ = 0 and a3 < z < a4 is not an axis for ∂/∂φ; moreover, if h 6= 0

there are naked closed timelike curves in spacetime for some choices of b and c, which are

generically regarded as pathological. Thus, we demand h = 0, which yields the constraint

∆axis = 0 , ∆axis ≡ (b̃+ c̃)(2a42a51 − b̃c) − 2a2
41a51c . (4.17)

In particular, this equation is obeyed if b = 0 = c, as expected. It is also obeyed if we take

the limit in which the first black hole disappears, i.e a1 = a2 = a3. Note that it does not

make sense to consider the limit of (4.17) in which the second black hole disappears, i.e

a3 = a4 = a5, since in that limit the rod whose direction defines the axis condition collapses

to zero size. In general, (4.17) can be regarded as an equation defining c̃2 in terms of b̃c̃:

c̃2 =
(2a42a43a51 − b̃c̃) b̃c̃

b̃c̃+ 2a51(a
2
41 − a42a43)

. (4.18)
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b̃c̃

2a51a42a43

0

−2a51(a241−a42a43)

2a51a42a43 c̃2

Figure 7: Axis condition (4.17): b̃c̃ can only take the values (4.19).

Positivity of the left hand side restricts the possible values of b̃c̃ to

−∞ < b̃c̃ < −2a51(a
2
41 − a42a43) ∨ 0 < b̃c̃ < 2a51a42a43 , (4.19)

as displayed in figure 7.

5. Analysis of the double Myers-Perry solution

5.1 Single black hole limits

Let us now see that the solution (4.10) indeed contains two Myers-Perry black holes. First

collapse the rod structure of the second black hole by taking a3 = a4 = a5. To establish that

the resulting metric describes a Myers-Perry black hole with a single angular momentum

parameter it is convenient to change from Weyl canonical coordinates (ρ, z) to prolate

spherical coordinates (x, y) by

µ1,2 = α(x∓ 1)(1 − y) , 2α ≡ a21 ,

so that ρ2 = α2(x2 − 1)(1− y2). Defining also ρ2
0 ≡ 4α+ b2, the metric coefficients become

(take q = b so that gtφ → 0 asymptotically)

Gtt = −4αx− b2y − ρ2
0

4αx− b2y + ρ2
0

, Gtφ = − bρ2
0(1 + y)

4αx− b2y + ρ2
0

,

Gφφ =
1 + y

4

(

4αx+ b2 + ρ2
0 +

2b2ρ2
0(1 + y)

4αx− b2y + ρ2
0

)

,

Gψψ = α(1 − y)(1 + x) , e2ν = k
Hx

F
=

4αx− b2y + ρ2
0

8α2(x2 − y2)
,

where we have taken k = 1 and a standard 2π period for the azimuthal angles; this choices

make the geometry free of conical singularities. The above metric coefficients coincide

– 13 –
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with those of the Myers-Perry black hole with one angular momentum [43]. The ADM

mass (which equals the Komar mass), ADM angular momentum (which equals the Komar

angular momentum), horizon angular velocity, area and temperature of this black hole are

given, respectively, by

MKomar
1 =

3π

8
∆1 , Jφ1 =

π

4
b∆1 , Ωφ

1 =
b

∆1
, A1 = 2π2

√
2a21 ∆1 , T1 =

1

2π

√
2a21

∆1
,

(5.1)

where

∆1 ≡ 2a21 + b2 .

Similarly we can collapse the rod structure of the first black hole by taking a1 = a2 =

a3. All of the above steps can be repeated, with the replacements a21 → a54 and b → c.

One finds another Myers-Perry black hole, with ADM mass, ADM angular momentum,

horizon angular velocity, area and temperature given by

MKomar
2 =

3π

8
∆2 , Jφ2 =

π

4
c∆2 , Ωφ

2 =
c

∆2
, A2 = 2π2

√
2a54 ∆2 , T2 =

1

2π

√
2a54

∆2
,

(5.2)

where

∆2 ≡ 2a54 + c2 .

Note that the extremal limit of black hole 1 (black hole 2) is obtained as a21 → 0 (a54 → 0),

for b 6= 0 (c 6= 0). Note also that each of these black holes obeys a Smarr-type formula:

2

3
MKomar
i = Ti

Ai

4
+ Ωφ

i J
φ
i , i = 1, 2 . (5.3)

5.2 Asymptotics and physical quantities

We now show that the solution is asymptotically flat and read off the ADM mass and

angular momentum. Introducing the asymptotic coordinates r and θ

ρ =
1

2
r2 sin 2θ , z =

1

2
r2 cos 2θ , (5.4)

the asymptotic limit becomes r → ∞. We can check that Gtt = −1 +O
(

1
r2

)

, as expected,

and fix q by requiring that Gtφ → 0 as r → ∞; this yields

q =
b̃+ c̃

a41
. (5.5)

For the conformal factor e2ν(ρ,z) we have, asymptotically,

e2ν =
k

r2
+O

(

1

r4

)

, (5.6)

which fixes k = 1. Thus, at infinity, the metric reduces to the standard form in bipolar

coordinates

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdψ2 + r2 cos2 θdφ2 , (5.7)
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so that taking the canonical periods ∆φ = 2π = ∆ψ guarantees absence of conical singu-

larities at infinity.

From the next to leading order term in Gtt and leading order term in Gtφ we can read

off the ADM mass and angular momentum to be

MADM =
3π

8

[

2a21 + 2a54 +
(b̃+ c̃)2

a2
41

]

, (5.8)

JφADM =
π

4

[

2[b̃(a21 + a54 + a34) + c̃(a21 + a54 + a31)]

a41
+

(b̃+ c̃)3

a3
41

]

. (5.9)

Note that these expressions i) are invariant under (4.13) as one would expect; ii) reduce

to (5.1) and (5.2) in the limits a3 = a4 = a5 and a1 = a2 = a3, respectively. Note also that

the ordering (3.1) guarantees positivity of the ADM mass.

5.3 Conical singularities

The conical excesses for the generic solution are

δψ = 2π

(

a41a52√
a51a31a32a42

·
∣

∣

∣

∣

2a42a51

2a42a51 + bc̃

∣

∣

∣

∣

− 1

)

, a2 ≤ z < a3 ; (5.10)

δφ = 2π

(

a41a52√
a51a43a53a42

·
∣

∣

∣

∣

2a42a51

2a42a51 − b̃c

∣

∣

∣

∣

− 1

)

, a3 < z ≤ a4 . (5.11)

These reduce to (3.4) when b = 0 = c and to (2.2) if also a1 = a2 and a4 = a5. Note that

the second condition should only be considered if one imposes the axis condition.

It is clear that the introduction of rotation could eliminate either of these conical

singularities, but not both simultaneously. However, one must note that the requirement

for either of these conical singularities to vanish is incompatible with the axis condition.

To see this, require first δψ = 0. This demands bc > 0. We already know that the axis

condition puts an upper bound on the positive values of bc; thus, we can parametrise the

possible values of bc as

bc =
2a51a42

a31
ǫ , 0 ≤ ǫ ≤ 1 .

Substituting in (5.11) we observe that ǫ 6= 1 do avoid a divergence in δφ. The condition

that δψ = 0 becomes

ǫ =
a31

a43

(

a41a52√
a51a31a32a42

− 1

)

.

It is fairly simple to show that the r.h.s. of this last equation is always greater or equal to

1; since we have seen that the l.h.s. is smaller than one we can conclude that δψ cannot

be set to zero and, at the same time, obey the axis condition. Thus we can set δψ = 0,

which regularises this conical singularity but, generically, the geometry will develop closed

timelike curves.

Let us now require δφ = 0. This demands bc < 0, in fact

bc =
2a42a51

a31
(1 − β) , β ≡ a41a52√

a51a43a53a42
. (5.12)
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Note that β ≥ 1. Replacing in (4.18) one gets

c2 =
2a2

42a51β(1 − β)

a2
41 − a42a43β

,

whose r.h.s. is manifestly negative (observe that a2
41 ≥ a42a43β). Thus δφ cannot be set to

zero and, at the same time, obey the axis condition. Notice therefore that δφ = 0 cannot

be interpreted as a regularity condition, since, when it is obeyed, ρ = 0, a3 < z < a4 is not

an axis.

The incompatibility of the axis and regularity conditions is reminiscent of the result

obtained in [15] for D = 4 using a post-post Newtonian analysis.

5.4 Horizons geometry, areas and temperatures

Let us now show that both black holes have, in general, regular (except for a conical

singularity at one point) finite area horizons and finite temperatures.

The horizon of the first black hole is located at ρ = 0 and a1 < z < a2. Considering

the coordinate transformation

ρ =
1

2

√

1 − 2a21

R2
R2 sin 2θ , z =

a1 + a2

2
+

1

2

(

R2 − a21

)

cos 2θ , (5.13)

the horizon is located at R2 = 2a21. Note that z = a2 − a21 sin2 θ. The metric on a spatial

section of the horizon reads

ds2H1
=
a31a51

a2
41

Σ(θ)f1(θ) dθ
2 +

f2(θ) cos2 θ

Σ(θ)
∆2 dφ2 + 2a21f3(θ) sin2 θ dψ2 , (5.14)

where

Σ(θ) ≡ F1(θ) sin2 θ + 2a21

(

1 + F2(θ)
)2
,

with the functions F (θ) given by

F1(θ) ≡ b2
a2

41

a2
51

f2(θ)

f1(θ)
, F2(θ) ≡ bc

a43

a51

cos2 θ

2(a42 + a21 sin2 θ)
,

and the functions f(θ) given by

f1(θ) ≡
a42 + a21 sin2 θ

a52 + a21 sin2 θ
, f2(θ) ≡

a32 + a21 sin2 θ

a42 + a21 sin2 θ
, f3(θ) ≡

a52 + a21 sin2 θ

a32 + a21 sin2 θ
. (5.15)

The area and temperature of this black hole are given by

A1 = 2π2

√
2a21a31a51

a41
∆ , T1 =

1

2π

√

2a21

a31a51

a41

∆
. (5.16)

Note that the results (5.14)–(5.16) reduce to the expressions in [19], for b = 0, and to the

ones of a single Myers-Perry black hole for a3 = a4 = a5, in particular to (5.1).

A similar analysis can be done for the horizon of the second black hole, which is located

at ρ = 0 and a4 < z < a5. Considering the coordinate transformation

ρ =
1

2

√

1 − 2a54

R2
R2 sin 2θ , z =

a4 + a5

2
+

1

2

(

R2 − a54

)

cos 2θ , (5.17)
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the horizon is located at R2 = 2a54. Note that z = a5 − a54 sin2 θ. The metric on a spatial

section of the horizon reads

ds2H2
=
a53a51

a2
52

Σ̄(θ)f̄1(θ) dθ
2 +

f̄2(θ) cos2 θ

Σ̄(θ)
∆̄2 dφ2 + 2a54f̄3(θ) sin2 θ dψ2 . (5.18)

where

Σ̄(θ) ≡ F̄1(θ) sin2 θ + 2a54(1 + F̄2(θ)) ,

with the functions F̄ (θ) given by

F̄1(θ) ≡
c̃2

a2
41

f̄2(θ)

f̄1(θ)
, F̄2(θ) =

b̃ a54 sin2 θ cos2 θ

a2
41a

2
51(a42 + a54 cos2 θ)

[

a51c̃f̄2(θ) +
b̃ a2

54 cos2 θ

2(a43 + a54 cos2 θ)

]

,

and the functions f̄(θ) given by

f̄1(θ) ≡
a42 + a54 cos2 θ

a41 + a54 cos2 θ
, f̄2(θ) ≡

a41 + a54 cos2 θ

a43 + a54 cos2 θ
, f̄3(θ) ≡

a43 + a54 cos2 θ

a42 + a54 cos2 θ
. (5.19)

The area and temperature of this black hole are given by

A2 = 2π2

√
2a54a53a51

a52
∆̄ , T2 =

1

2π

√

2a54

a53a51

a52

∆̄
. (5.20)

Note that the results (5.18)–(5.20) reduce to the expressions in [19], for b = 0 = c, and to

the ones of a single Myers-Perry black hole for a1 = a2 = a3, in particular to (5.2).

The surfaces described by (5.14) and (5.18) are topologically 3-spheres; they are reg-

ular, for generic parameters, except for a conical singularity at θ = 0 for the first black

hole, where there is a conical excess in ψ given by (5.10), and at θ = π/2 for the second

black hole, where there is a conical excess in φ given by (5.11), if one imposes the axis

condition (4.17). Note that at θ = π/2 for the first black hole, and at θ = 0 for the second,

there are no conical singularities, in agreement with our discussion of section 2.

5.5 Individual masses and angular momenta

The individual mass of each black hole can be computed as a Komar integral at the horizon

of each black hole. In five dimensions, and for a metric of type (4.10) the integral takes

the form

MKomar =
3

32πG5

∫

S

⋆dξ =
3

32πG5

∫

Hi

dzdφdψ
gρρgψψ√−g [gtφgtφ,ρ − gφφgtt,ρ] ,

where ξ = gttdt + gtφdφ is the one-form dual to the asymptotic time translations Killing

vector field ∂/∂t and S is the boundary of any spacelike hypersurface; to derive the second

equality we have already chosen S to be a spatial section of the event horizon of one of the

two black holes. Thus a1 < z < a2 (a4 < z < a5) for the first (second) black hole. We find

MKomar
1 =

3π

8

2a42a51

2a42a51 + bc̃
∆ , MKomar

2 =
3π

8
∆̄ . (5.21)
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The intrinsic spin of each black hole can also be computed as a Komar integral at the

horizon of each black hole. In five dimensions, and for a metric of type (4.10) the integral

takes the form

JKomar = − 1

16πG5

∫

S

⋆dζ = − 1

16πG5

∫

Hi

dzdφdψ
gρρgψψ√−g [gtφgφφ,ρ − gφφgtφ,ρ] , (5.22)

where ζ = gφφdφ+gtφdt is the one-form dual to the azimuthal Killing vector field ∂/∂φ and

S is the boundary of any spacelike hypersurface; again, for the second equality we have

already chosen S to be a spatial section of the event horizon of one of the two black holes.

Thus a1 < z < a2 (a4 < z < a5) for the first (second) black hole. We find

JKomar
1 =

π

4

2a51(a42b̃− a21c̃)

a41(2a42a51 + bc̃)
∆ , JKomar

2 =
π

4

(b̃+ c̃)

a41
∆̄ . (5.23)

Thus the angular momentum to mass ratio of any of the individual black holes has a very

simple expression

j1 ≡ JKomar
1

MKomar
1

=
2

3a41

(

b̃− a21

a42
c̃

)

, j2 ≡ JKomar
2

MKomar
2

=
2

3a41
(b̃+ c̃) .

A simple interpretation for the parameter c follows: it is, up to a constant, the difference

in angular momentum per unit mass of the two black holes

c =
3

2

a42

a43
(j2 − j1) . (5.24)

The parameter b, on the other hand, is a measure of the sum of the angular momentum

per unit mass of the two black holes since

b =
3

2

(

a42

a31
j1 +

a21

a31
j2

)

. (5.25)

Note that, if c = 0,

j1 = j2 =
2

3

a31

a41
b . (5.26)

Thus, one should regard b as turning on the angular momentum per unit mass of both

black holes, and one should think of c as turning on the difference in angular momentum

per unit mass of the two black holes.

One can turn off the intrinsic spin of either black hole by imposing the conditions

j1 = 0 ⇔ b̃ =
a21

a42
c̃ , j2 = 0 ⇔ b̃ = −c̃ .

One can, however, show that neither these conditions is compatible with the axis condi-

tion (4.17) and non-trivial b and c. This is most easily done re-expressing the axis condition

in terms of j1 and j2. We get

∆axis =
3

2

a41a42

a43

[

2a51(a41j1 − a31j2) −
9

4
j2(j2 − j1)(a42j1 + a21j2)

]

. (5.27)

– 18 –
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The Komar masses and angular momenta, (5.21) and (5.22), obey, together with the

temperatures and areas (5.16) and (5.20), Smarr relations (5.3), as in the static case and,

for instance, the black saturn solution; but unlike these backgrounds, for our solution the

Komar masses and angular momenta, in general, do not add up to the ADM mass and

angular momentum, since

MADM = MKomar
1 +MKomar

2 +MKomar
extra , (5.28)

JADM = JKomar
1 + JKomar

2 + JKomar
extra . (5.29)

The reason is that, in general, there is a non-trivial Komar integral coming from the surface

Sφ, which is given by ρ = 0, a3 < z < a4. This contribution is only present if the axis

condition is not obeyed and it accounts for the extra piece in the last two equations:

MKomar
extra =

3

32πG5

∫

Sφ

dzdφdψ
gρρgψψ√−g [gtφgtφ,ρ − gφφgtt,ρ]

= −3π

8

a43b∆axis

a41a51(2a42a51 + bc̃)
, (5.30)

JKomar
extra = − 1

16πG5

∫

Sφ

dzdφdψ
gρρgψψ√−g [gtφgφφ,ρ − gφφgtφ,ρ] (5.31)

= − a43∆axis

3a51a
2
41a42

(

3π

4
a42 +MKomar

1

)

. (5.32)

Note that the extra piece is indeed proportional to a43. Imposing the axis condition, the

Komar masses and angular momenta do add up to the ADM mass and angular momentum.

6. Discussion and conclusions

In this paper we have used the inverse scattering technique to generate a new asymptotically

flat, vacuum solution of five dimensional general relativity describing two Myers-Perry black

holes, each with a singular angular momentum parameter, both in the same plane. We

have described the basic properties and physical quantities of the solution as well as of the

background geometry it is built upon. In general the solution has conical singularities in

both spatial 2-planes. The conical singularity in the ρ− ψ plane can be removed if

bc̃ = 2a42a51

(

a41a52√
a51a31a32a42

− 1

)

.

On the other hand, the conical singularity in the φ plane cannot be removed. Indeed, when

the axis condition is imposed, which guarantees that ρ = 0, a3 < z < a4 is an axis, δφ 6= 0.

The axis condition, which has been interpreted as a torque balance condition is

(b̃+ c̃)(2a42a51 − b̃c) = 2a2
41a51c .

It would be interesting to have a physical interpretation of these conditions in terms of the

different forces and torques that play a role in this geometry. This might be possible to do

using an energetics analysis along the lines of [18, 45], a problem we expect to address in

the future.
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One somewhat unexpected feature that we found was a contribution to the ADM mass

and angular momentum of one part of the geometry exterior to the black hole horizons,

if the axis condition is not obeyed. This suggests that, in the post-post Newtonian anal-

ysis of this type of problems, along the lines of [12, 15], one should indeed include one

further parameter describing the rotating rod, as suggested in [46]. This might clarify the

discrepancy between the result obtained in the post-post Newtonian analysis and the one

obtained from the exact double Kerr solution, for the regularity and axis conditions in the

case of two massive spinning particles in D = 4.

Finally let us remark that in the five dimensional family of supersymmetric multi-

black hole spacetimes known as BMPV [47, 48], no condition is required, analogous to

the axis condition that has to be imposed for the IWP spacetimes. This is in curious

contrast with the smoothness properties of horizons in static multi-centre solutions, pointed

out in [49, 50], which get worse in five than in four dimensions and still worse in higher

dimensions.
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